3.70 \(\int \frac{1}{x^3 \sqrt{a+c x^2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=457 \[ \frac{c \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{2 a^{3/2} d}+\frac{f \left (-\left (e^2-d f\right ) \left (e-\sqrt{e^2-4 d f}\right )-4 d e f+2 e^3\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (e-\sqrt{e^2-4 d f}\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} d^3 \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{f \left (-\left (e^2-d f\right ) \left (\sqrt{e^2-4 d f}+e\right )-4 d e f+2 e^3\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} d^3 \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\left (e^2-d f\right ) \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{\sqrt{a} d^3}+\frac{e \sqrt{a+c x^2}}{a d^2 x}-\frac{\sqrt{a+c x^2}}{2 a d x^2} \]

[Out]

-Sqrt[a + c*x^2]/(2*a*d*x^2) + (e*Sqrt[a + c*x^2])/(a*d^2*x) + (f*(2*e^3 - 4*d*e*f - (e^2 - d*f)*(e - Sqrt[e^2
 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2
- 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^3*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*
f])]) - (f*(2*e^3 - 4*d*e*f - (e^2 - d*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*
x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^3*Sqrt[e^2 - 4
*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) + (c*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(2*a^(3/2)
*d) - ((e^2 - d*f)*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(Sqrt[a]*d^3)

________________________________________________________________________________________

Rubi [A]  time = 1.86333, antiderivative size = 457, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 9, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {6728, 266, 51, 63, 208, 264, 1034, 725, 206} \[ \frac{c \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{2 a^{3/2} d}+\frac{f \left (-\left (e^2-d f\right ) \left (e-\sqrt{e^2-4 d f}\right )-4 d e f+2 e^3\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (e-\sqrt{e^2-4 d f}\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} d^3 \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{f \left (-\left (e^2-d f\right ) \left (\sqrt{e^2-4 d f}+e\right )-4 d e f+2 e^3\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} d^3 \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\left (e^2-d f\right ) \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{\sqrt{a} d^3}+\frac{e \sqrt{a+c x^2}}{a d^2 x}-\frac{\sqrt{a+c x^2}}{2 a d x^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-Sqrt[a + c*x^2]/(2*a*d*x^2) + (e*Sqrt[a + c*x^2])/(a*d^2*x) + (f*(2*e^3 - 4*d*e*f - (e^2 - d*f)*(e - Sqrt[e^2
 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2
- 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^3*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*
f])]) - (f*(2*e^3 - 4*d*e*f - (e^2 - d*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*
x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^3*Sqrt[e^2 - 4
*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) + (c*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(2*a^(3/2)
*d) - ((e^2 - d*f)*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(Sqrt[a]*d^3)

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^3 \sqrt{a+c x^2} \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac{1}{d x^3 \sqrt{a+c x^2}}-\frac{e}{d^2 x^2 \sqrt{a+c x^2}}+\frac{e^2-d f}{d^3 x \sqrt{a+c x^2}}+\frac{-e \left (e^2-2 d f\right )-f \left (e^2-d f\right ) x}{d^3 \sqrt{a+c x^2} \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac{\int \frac{-e \left (e^2-2 d f\right )-f \left (e^2-d f\right ) x}{\sqrt{a+c x^2} \left (d+e x+f x^2\right )} \, dx}{d^3}+\frac{\int \frac{1}{x^3 \sqrt{a+c x^2}} \, dx}{d}-\frac{e \int \frac{1}{x^2 \sqrt{a+c x^2}} \, dx}{d^2}+\frac{\left (e^2-d f\right ) \int \frac{1}{x \sqrt{a+c x^2}} \, dx}{d^3}\\ &=\frac{e \sqrt{a+c x^2}}{a d^2 x}+\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{a+c x}} \, dx,x,x^2\right )}{2 d}+\frac{\left (e^2-d f\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+c x}} \, dx,x,x^2\right )}{2 d^3}+\frac{\left (-2 e f \left (e^2-2 d f\right )+f \left (e^2-d f\right ) \left (e-\sqrt{e^2-4 d f}\right )\right ) \int \frac{1}{\left (e-\sqrt{e^2-4 d f}+2 f x\right ) \sqrt{a+c x^2}} \, dx}{d^3 \sqrt{e^2-4 d f}}-\frac{\left (-2 e f \left (e^2-2 d f\right )+f \left (e^2-d f\right ) \left (e+\sqrt{e^2-4 d f}\right )\right ) \int \frac{1}{\left (e+\sqrt{e^2-4 d f}+2 f x\right ) \sqrt{a+c x^2}} \, dx}{d^3 \sqrt{e^2-4 d f}}\\ &=-\frac{\sqrt{a+c x^2}}{2 a d x^2}+\frac{e \sqrt{a+c x^2}}{a d^2 x}-\frac{c \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+c x}} \, dx,x,x^2\right )}{4 a d}+\frac{\left (e^2-d f\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{c}+\frac{x^2}{c}} \, dx,x,\sqrt{a+c x^2}\right )}{c d^3}-\frac{\left (-2 e f \left (e^2-2 d f\right )+f \left (e^2-d f\right ) \left (e-\sqrt{e^2-4 d f}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a f^2+c \left (e-\sqrt{e^2-4 d f}\right )^2-x^2} \, dx,x,\frac{2 a f-c \left (e-\sqrt{e^2-4 d f}\right ) x}{\sqrt{a+c x^2}}\right )}{d^3 \sqrt{e^2-4 d f}}+\frac{\left (-2 e f \left (e^2-2 d f\right )+f \left (e^2-d f\right ) \left (e+\sqrt{e^2-4 d f}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a f^2+c \left (e+\sqrt{e^2-4 d f}\right )^2-x^2} \, dx,x,\frac{2 a f-c \left (e+\sqrt{e^2-4 d f}\right ) x}{\sqrt{a+c x^2}}\right )}{d^3 \sqrt{e^2-4 d f}}\\ &=-\frac{\sqrt{a+c x^2}}{2 a d x^2}+\frac{e \sqrt{a+c x^2}}{a d^2 x}+\frac{f \left (2 e^3-4 d e f-\left (e^2-d f\right ) \left (e-\sqrt{e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c \left (e-\sqrt{e^2-4 d f}\right ) x}{\sqrt{2} \sqrt{2 a f^2+c \left (e^2-2 d f-e \sqrt{e^2-4 d f}\right )} \sqrt{a+c x^2}}\right )}{\sqrt{2} d^3 \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e^2-2 d f-e \sqrt{e^2-4 d f}\right )}}-\frac{f \left (2 e^3-4 d e f-\left (e^2-d f\right ) \left (e+\sqrt{e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c \left (e+\sqrt{e^2-4 d f}\right ) x}{\sqrt{2} \sqrt{2 a f^2+c \left (e^2-2 d f+e \sqrt{e^2-4 d f}\right )} \sqrt{a+c x^2}}\right )}{\sqrt{2} d^3 \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e^2-2 d f+e \sqrt{e^2-4 d f}\right )}}-\frac{\left (e^2-d f\right ) \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{\sqrt{a} d^3}-\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{a}{c}+\frac{x^2}{c}} \, dx,x,\sqrt{a+c x^2}\right )}{2 a d}\\ &=-\frac{\sqrt{a+c x^2}}{2 a d x^2}+\frac{e \sqrt{a+c x^2}}{a d^2 x}+\frac{f \left (2 e^3-4 d e f-\left (e^2-d f\right ) \left (e-\sqrt{e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c \left (e-\sqrt{e^2-4 d f}\right ) x}{\sqrt{2} \sqrt{2 a f^2+c \left (e^2-2 d f-e \sqrt{e^2-4 d f}\right )} \sqrt{a+c x^2}}\right )}{\sqrt{2} d^3 \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e^2-2 d f-e \sqrt{e^2-4 d f}\right )}}-\frac{f \left (2 e^3-4 d e f-\left (e^2-d f\right ) \left (e+\sqrt{e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c \left (e+\sqrt{e^2-4 d f}\right ) x}{\sqrt{2} \sqrt{2 a f^2+c \left (e^2-2 d f+e \sqrt{e^2-4 d f}\right )} \sqrt{a+c x^2}}\right )}{\sqrt{2} d^3 \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e^2-2 d f+e \sqrt{e^2-4 d f}\right )}}+\frac{c \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{2 a^{3/2} d}-\frac{\left (e^2-d f\right ) \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{\sqrt{a} d^3}\\ \end{align*}

Mathematica [A]  time = 1.67879, size = 460, normalized size = 1.01 \[ -\frac{\frac{c d^2 \sqrt{a+c x^2} \left (\frac{a}{c x^2}-\frac{\tanh ^{-1}\left (\sqrt{\frac{c x^2}{a}+1}\right )}{\sqrt{\frac{c x^2}{a}+1}}\right )}{a^2}-\frac{\sqrt{2} f \left (e^2 \sqrt{e^2-4 d f}-d f \sqrt{e^2-4 d f}-3 d e f+e^3\right ) \tanh ^{-1}\left (\frac{2 a f+c x \left (\sqrt{e^2-4 d f}-e\right )}{\sqrt{a+c x^2} \sqrt{4 a f^2-2 c \left (e \sqrt{e^2-4 d f}+2 d f-e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}+\frac{\sqrt{2} f \left (-e^2 \sqrt{e^2-4 d f}+d f \sqrt{e^2-4 d f}-3 d e f+e^3\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{a+c x^2} \sqrt{4 a f^2+2 c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}+\frac{2 \left (e^2-d f\right ) \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{\sqrt{a}}-\frac{2 d e \sqrt{a+c x^2}}{a x}}{2 d^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-((-2*d*e*Sqrt[a + c*x^2])/(a*x) - (Sqrt[2]*f*(e^3 - 3*d*e*f + e^2*Sqrt[e^2 - 4*d*f] - d*f*Sqrt[e^2 - 4*d*f])*
ArcTanh[(2*a*f + c*(-e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[
a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + (Sqrt[2]*f*(e^3 - 3*
d*e*f - e^2*Sqrt[e^2 - 4*d*f] + d*f*Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a
*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 -
2*d*f + e*Sqrt[e^2 - 4*d*f])]) + (2*(e^2 - d*f)*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/Sqrt[a] + (c*d^2*Sqrt[a + c*
x^2]*(a/(c*x^2) - ArcTanh[Sqrt[1 + (c*x^2)/a]]/Sqrt[1 + (c*x^2)/a]))/a^2)/(2*d^3)

________________________________________________________________________________________

Maple [B]  time = 0.278, size = 911, normalized size = 2. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x)

[Out]

-8*f^3/(-e+(-4*d*f+e^2)^(1/2))^3/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f
^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*
f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f
+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+
2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))-64*f^4/(-e+(-4*d*f+e^2)^(1/2))^3/(e+(-4*
d*f+e^2)^(1/2))^3/a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)*d+64*f^3/(-e+(-4*d*f+e^2)^(1/2))^3/(e+(-4*d*f+
e^2)^(1/2))^3/a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)*e^2-8*f^3/(e+(-4*d*f+e^2)^(1/2))^3/(-4*d*f+e^2)^(1
/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c
*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c
*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1
/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^
2)^(1/2))/f))+2*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))/a/x^2*(c*x^2+a)^(1/2)-2*f/(-e+(-4*d*f+e^2)^(1
/2))/(e+(-4*d*f+e^2)^(1/2))*c/a^(3/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)+16*f^2*e/(-e+(-4*d*f+e^2)^(1/2))^2
/(e+(-4*d*f+e^2)^(1/2))^2/a/x*(c*x^2+a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a}{\left (f x^{2} + e x + d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)*x^3), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \sqrt{a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(x**3*sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

sage0*x